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Abstract—The problem of unsteady heat transfer to pulsatile flow of a dusty fluid in a parallel plate channel

has been studied. It is observed that the unsteady part of the fluid velocity as well as of the particle phase

velocity has a phase lag which increases with increase of ¢, i.e. the volume fraction of the particles. The

steady part of the heat transfer at the hotter plate decreases with increase of ¢ whereas it increases with

increase of ¢ at the colder plate. The amplitude of the unsteady part of the heat transfer at both the plates
decreases with increase of ¢.

INTRODUCTION

THE STUDY of heat transfer to a dusty fluid flowing in
a channel has applications in technological fields, e.g.
heat exchanger, reactor cooling etc. Further, con-
sidering blood as a binary system of plasma (fluid
phase) and blood cells (particle phase), the study of
dusty fluid and heat transfer has a relevance to the
flow of blood.

In most of the studies of dusty fluid flows, the
volume fraction of the particles has been neglected.
However, this assumption is not justified when the
fluid density is high or particle mass fraction is large.
Rudinger [1] has shown that the error in neglecting
the volume fraction range from insignificant to large.
Nag and Datta [2, 3] have considered the volume
fraction in the unsteady flow of a dusty fluid through
arectangular channel. Datta and Das [4] studied heat
transfer in the flow of a dusty gas.

In the present study we have considered the prob-
lem of unsteady heat transfer to pulsatile flow of a
dusty fluid in a parallel plate channel.

MATHEMATICAL FORMULATION

We consider the pulsatile flow of a dusty fluid
between two infinitely long parallel plates at a distance
h apart. Taking x-axis along the plates and y-axis
normal to them, the pulsatile flow is assumed to be
induced by the pressure gradient of the form

1dp

"‘;b;:A[l-I-EC w], (l)

A being a constant and i = \/(—1).

Since the plates are infinite, all physical quantities
excepting pressure may be taken as functions of y and
t only.

The governing equations of motion and energy for
the two phases may be written as [5] :

1dp  d%u
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Assuming the plates to be maintained at constant
temperature, the boundary conditions of the problem

are
u=0, u,=0, T=T, at y=0, ©
u=0, u,=0, T=T, at y=h

where it is assumed that T, > T,.

METHOD OF SOLUTION

Introducing the following dimensionless variables
and parameters,
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NOMENCLATURE
¢p ¢ specific heats of fluid and solid particles  Greek symbols
Ec Eckert number o dust parameter
f ratio between p, and p y ratio between c, and ¢,
h distance between plates 0,6, dimensionless fluid and particle phase
k thermal conductivity temperatures
p pressure of fluid 00,0, steady parts of 6 and 8,
Pr Prandt! number #,,6, unsteady parts of 0
R,R, fluid and particle phase Reynolds 0,),0,, unsteady parts of 6,
numbers u viscosity of fluid
t time v,v,  kinematic viscosities of fluid and particle
T,T, temperatures of fluid and particle phase phase
To, T, temperatures of the plate at 7 = 0 and En dimensionless values of x and y
atn =1 p,p, densities of fluid and particle phase
u,u, fluid and particle phase velocities along Pe material density of solid particles
X-axis T, Tr  particle velocity and thermal relaxation
ug, Uy Steady parts of u and u, times
u,,uy unsteady parts of ¥ and u, ¢ volume fraction of dust particles
x,y  space coordinates along and w the frequency of oscillation.
perpendicular to the plates.
i=uw/d, 0=(T-T)[T\—=Ty), I=tw, 6 = B4(n) +0,(n) €“ +20,(n) e }
. iy 2 sl (13)
é = x/h, up = upw/A9 Bp = (Tp— TO)/(TI - TO)’ Gp = Gp()(n) +£epl(n) e” +e 0p2(r,) €
P =pl(Aph), n=ylh, R= wh?lv, Using equations (7), (12) and (13) in equations (8)—
R,= wh? e f=palps ¥ =cicy (1‘1) and corznparing'the terms free from ¢, .the terms
with ¢ and ¢ respectively, we get the following sets of
Pr=pcylk, Ec= —A*[{w?c,(T,—T,)} equations

the equations (1)—(4) can be rewritten as, on dropping
the bars for convenience,

—%—2—— 1+ @)
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(11)

Since the flow is induced by the pressure gradient
of the form given in equation (7), the velocity and
temperature of the fluid and that of the particle phase
can be assumed as,

u = uo(n) +eu,(n) e }

U, = upo(n) + sup, (1) € (12)

1 d*u 3
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R, dn* + (i —iuo) = 0
1 d*6, 2afv Ec duy ¥
RPrdn? dn? (ep() 0o} + dr, L (14)
+of Ec(upy—ug)> =0
Ec du,,o 2 Ec dzupo
(opo R, (dn> TR Ay
4 0 J
1d%u, ]
R d,,z +of (upy —uy) —i(1 —P)u, = —1 )
1 d%u ]
R_p an pl +at(up — uy)+iuy =0
1 4%, 29 2Ec duq du,
R Pr =0y —0)+ —————
RPrdn® 3 Pr R dn dn 15
+20f Ee(upo — o)y —u,) —i(1 — )8, = 0
2“7 Ec(_ duydu,
(opl |)+l'y0p|+ R ( d:;o d"
d’u d%u
+u Upo d §I+ Upy d?]zpo)=0_,




Unsteady heat transfer to pulsatile flow

LdZOZ 2afy(0 Ec du, Y 1
R Pr dn? 3 Pr 02+ dn
+af Ee(uy —u1)*—2i(1 ~ $)8; = 0
r (16)

2ay du, ¥ Ec d%u,

0 £ (dup Q Uy

(pZ )+ p(dﬂ>+ pi dﬂ

+2i'y9p2 = 0 J

The corresponding boundary conditions are,

up=0, upy=0 0,=0 at =0, (17

Uy 0, upo=0, 00=1 at ’7=l

uy=0, u, =0, 6,=0 at =0,

u, =0, u, =0, 8,=0 at =1 (18)
8,=0 at =0,
alowilit w

From the first two equations of (14) eliminating u, we
get,

4 2
‘;"“f +m§% +m, =0 20)
where m§ = R,a—Raf and m, = RR .

Our objective is to discuss that type of flow in which
the volume fraction ¢ of the particle phase is small
but not negligible and particles will diffuse through-
out the carrier fluid. So we can assume that the vis-
cosity of particle phase is very small compared to that
of the carrier fluid (i.e. v, « v), so that R, > R and
f< 1 which make m? always positive.

Solving the equation (20) for u, using boundary
conditions from (17) we have,

m
Ug = '2Tn|—(2)’7(1 )]

Rmi—m, |cos (mon—mo/2)
R cos (me2)

—1} @n

using expression of u, in the first equation of (14), uy
can be written as,

{cos (mon—mo/2) 1}'

“0 = om 2’7(1_) cos (m,/2)

(22)

Similarly, eliminating u,, from the first two equa-
tions of (15) and solving the resulting differential
equation for u, with appropriate boundary conditions
from (18) we get,

e“"’ +eﬁ|(l‘—’l)
1+en

eﬂ.n+eﬂ.(l—rl)
Yo14éh

+ky (23)

U =A,
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where,
k ﬂ R—k,o3
Al A ﬂz ) Bl =f“ﬂfl—s
s ki =4k, —k = —4k,)
e I L E—
k .
ky=35 k2= RR(1-¢)~iRRa{f+(1-9)},
2

ky= —RR,(a+i),

k, = a(R,— RN +i{R,~ R(1—¢)}.

Using u, in the first equation of (15) the expression
for u,, can be obtained as,

i(1—¢) 1 1
Uy = l:l‘*‘ of :Iu'_a_f_R_af

e* ¢ (1= 26”"’-}-6”'“‘"’
x |:A,a,—-—l+e‘ +BB A | @

Eliminating 6, from the last two equations of (14)
and using the solutions of u, and uy in the resulting
differential equation of 8,, the solution has been
obtained on applying the boundary conditions for 8,
from (19),

8 = A— Bon*+ Co 22—y’

D (2Rm3+1) cos 2mgn—m,)
+0: 8 cos (mof2)

mg
—(QRm}+3m,+2) cos (moq— -2—>:|

(1—2’1) my
+EZ[ mo < #_2—>

(I=mn mg
— - — F, 25
T cos 3 + 25)
where
EcPrR|m, 2aR,
”2'7»«5—[7<“ 3 *R“f>
S 22 me
+m_3 H-Rmo_{_Zcosz 2 +i
REcPr ,  4af(1+ R’m})
B T M g
2Raf
m2 cos? (m,/2)
Ec Pr
C,= 24R< >(2R —3R/)
D, = Ec PrR*af

m3 cos (m,f2)
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From the last equation of (14) using expressions of
uo and uy, from (21) and (22), respectively, we get,

3 PrEc
2yaR,m}

p0
mi\ fcos (mon—my/2) :
XKR"RZ“»T%){ <05 (maf2) “'}

2 : 2
mj 2 sin (mon—m,/2)
— 1= Miutel ol . i
+ 4 { 2n+ my  cos (mg/2)

F,= Dz[ZRm§+3m,—

0 =60

2

mi cos (mgn —m,/2)

+—n(l-M——————-—— 17| (26)
2 cos (my/2)
0.70
$=0.06
/’ ’— __ N
s, - —_ NN
0.56 7/ N\
k I N\
/j \
- . W
= 0.42 %— 5/ $:004 \
5 1 \\\‘
5 ] $:0.02 \
Q
o 1
= i/
£ o028
o
E —— Fluid phase
---—- Particle phase
0.4
| 1 1
0 0.2 04 0.6 08 1.0
n

Fi1G. 2. Distribution of the amplitude of », and uj,.

N. DATTA et al.

-0.5
’ -0.6 )
2-07) g
2
S
s -08F i
o
wn
o
£
a -09¢F T
~— Fluid
~ ==~ Particle phase
-1.0 ' -

1 1
0 0.2 0.4 0.6 0.8 1.0

FiG. 3. Distribution of phase lag of u; and u,,.

From the last two equations of (15), 0, has been
eliminated and the resulting differential equation of
6, has been solved using appropriate boundary con-
ditions from (18). Using the expression for 8, in the
last equation of (15), the expression for 6, can be
calculated. Applying the same procedure in the two
equations of (16) and using boundary conditions from
(19) the solution of @, and 8, can easily be obtained.
To save space, the expressions for 8,, 0,,, 0, and 0,,
have been omitted.

DISCUSSION

In order to make a detailed discussion of results,
numerical computations have been made on taking
R=350, R,=200, =10, Pr=0.72, Ec=0.02,
y=14, ¢ =(0.01-0.1) and f= (p./p)¢$, where we
have assumed p./p ~ O(10) and the results have been
shown in Figs. 1-7.

Figure 1 shows that the distribution of the steady
part of the velocity of fluid as well as that of the
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FiG. 5. Steady part df#,/dn of heat transfer of fluid phase
against patnp =0andy = 1.

particle phase for various values of volume fraction
¢. It reveals that for both phases the velocity
increases with increase of ¢ and it may be noted that
unlike the profiles of the fluid velocity, the profiles of
the particle phase velocity are flatter at the centre of
the channel.

In Fig. 2 the graphs of the amplitude of the unsteady
part of the velocity of the fluid and that of the particle
phase have been drawn against » for different values
of ¢. It can be observed that the amplitude increases
with increase of ¢ for both phases. The profiles of the
particle phase show that the amplitude remains the
same for some distance near the centre of the channel.

Figure 3 shows the variation of phase lag of the
unsteady part of the velocity of fluid as well as of
particle phase against n for various values of ¢. It
shows that phase lag increases with increase of ¢ and
at the centre of the channel the phase lag is maximum
for both phases.
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FI1G. 6. Amplitude of unsteady part df,/dn of heat transfer
of fluid phase against g at n =0 and 5 = 1.
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FiG. 7. Amplitude of unsteady part d0,/dy of heat transfer
of fluid phase against ¢ at y =0 and = 1.

Figure 4 shows the variation of the amplitude of
first unsteady part of the temperature of the fluid and
that of the particle phase against  for various ¢. It is
observed that amplitude increases with increase of ¢
and reaches maximum near the colder wall.

The graphs of the steady part of heat transfer df/dn
atn = 0 and n = 1 against ¢ have been drawn in Fig.
5. It shows that at the colder plate n =0, dfy/dn
increases with increase of ¢ and at the hotter plate
n = 1,d0y/dn decreases with increase of ¢. Heat trans-
fer rate at 5 = 1 is always less than that at n = 0.

Figure 6 shows the graphs of amplitude of unsteady
part of heat transfer, d0,/dn and d0,,/dn against ¢ for
n=0 and n=1. It reveals that the amplitude of
d0,/dn increase with increase of ¢ and the values of
amplitude of d@,/dn and dfl,,/dn at n = 0 are greater
than those at n = 1.

Figure 7 shows the graphs of amplitude of unsteady
part of heat transfer df,/dy and df,,/dn against ¢
for n =0 and n = 1. It reveals that for small ¢, the
amplitude of df,/dn and df,,/dn increase with increase

of ¢.

CONCLUSION

This study reveals that the unsteady pulsatile flow
of a dusty fluid has a phase lag which increases with
increase of particle loading. The amplitude of the
unsteady part of the heat transfer increases with
increase of particle loading.
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