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Abstract-The problem of unsteady heat transfer to pulsatile flow of a dusty fluid in a parallel plate channel 
has been studied. It is observed that the unsteady part of the fluid velocity as well as of the particle phase 
velocity has a phase lag which increases with increase of 4. i.e. the volume fraction of the particles. The 
steady part of the heat transfer at the hotter plate decreases with increase of 4 whereas it increases with 
increase of I$ at the colder plate. The amplitude of the unsteady part of the heat transfer at both the plates 

decreases with increase of I$. 

INTRODUCTION 

THE STUDY of heat transfer to a dusty fluid flowing in 
a channel has applications in technological fields, e.g. 
heat exchanger, reactor cooling etc. Further, con- 
sidering blood as a binary system of plasma (fluid 
phase) and blood cells (particle phase), the study of 
dusty fluid and heat transfer has a relevance to the 
flow of blood. 

In most of the studies of dusty fluid flows, the 
volume fraction of the particles has been neglected. 
However, this assumption is not justified when the 
fluid density is high or particle mass fraction is large. 
Rudinger [I] has shown that the error in neglecting 
the volume fraction range from insignificant to large. 
Nag and Datta [2, 31 have considered the volume 
fraction in the unsteady flow of a dusty fluid through 
a rectangular channel. Datta and Das [4] studied heat 
transfer in the flow of a dusty gas. 

In the present study we have considered the prob- 
lem of unsteady heat transfer to pulsatile flow of a 
dusty fluid in a parallel plate channel. 

MATHEMATICAL FORMULATION 

We consider the pulsatile flow of a dusty fluid 
between two infinitely long parallel plates at a distance 
h apart. Taking x-axis along the plates and y-axis 
normal to them, the pulsatile flow is assumed to be 
induced by the pressure gradient of the form 

- .!aP = A[1 +Eeiy, 
pax 

A being a constant and i = ,/( - 1). 

(1) 

Since the plates are infinite, all physical quantities 
excepting pressure may be taken as functions ofy and 
t only. 

The governing equations of motion and energy for 
the two phases may be written as [5] : 

+pp(llp-U)Zltp+PpC,(Tp-T)/TT (3) 

(4) 
au P- a% 

- 
at 

-V + -(Up-U)/Tp p a) 

ah 
--/* u 2. 

p pay* 

(5) 

Assuming the plates to be maintained at constant 
temperature, the boundary conditions of the problem 
are 

u = 0, up = 0, T = To at y  = 0, 

u = 0, up = 0, T=T, at y=h > 
(6) 

where it is assumed that T, > T,,. 

METHOD OF SOLUTION 

Introducing the following dimensionless variables 
and parameters, 
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NOMENCLATURE 

cpt cs specific heats of fluid and solid particles Greek symbols 
EC Eckert number a dust parameter 
f ratio between pp and p ratio between c, and cp 
h distance between plates Lo, dimensionless fluid and particle phase 
k thermal conductivity temperatures 
P pressure of fluid BO, f?,,,, steady parts of 0 and f$ 
Pr Prandtl number 0 ,, e2 unsteady parts of 8 
R, R, fluid and particle phase Reynolds ep,, ep2 unsteady parts of f$ 

numbers P viscosity of fluid 
r time v, vp kinematic viscosities of fluid and particle 
T, T, temperatures of fluid and particle phase phase 
T,,, T, temperatures of the plate at q = 0 and 5,tl dimensionless values of x and y 

atr]= 1 P, Pp densities of fluid and particle phase 
u, up fluid and particle phase velocities along pC material density of solid particles 

-v-axis rp, rr particle velocity and thermal relaxation 
uO, up0 steady parts of u and up times 
u ,, up, unsteady parts of u and up 4 volume fraction of dust particles 
-?Y space coordinates along and 0 the frequency of oscillation. 

perpendicular to the plates. 

1= uo/A, 6’ = (T- T,)/(T,- To), ;= m, 

5 = x/h, up = u,dA, ep = VP- TOWI - To), 

jj = p/(Aph), q = y/h, R = oh2/v, 

R, = mh21vp, f = PJP, Y = c&, 

Pr = pc,/k, EC = - A2/{02c,(T, - To)} 

e = e,(q) +~e,(tf) ei’+s2e2(q) e2i’ 

ep = e,cq) + Eep,(q) eir +&*ep2(q) I eZi’ . (13) 

Using equations (7), (12) and (13) in equations (8)- 
(11) and comparing the terms free from E, the terms 
with E and .s* respectively, we get the following sets of 
equations 

the equations (l)-(4) can be rewritten as, on dropping 
the bars for convenience, Ld2uo +af(u*-uu,) = - 1 

R dq2 1 
ap --= 1 +se” 

1 d2uN 
at (7) -- 

R, dtl 
2 +a@,,-u,) = 0 

(I-$)$= -$+A$+af(u,-u) (8) (14) 

au i a% -x=--P -u(u,-u) (9 
+afEc(~~-u,,)~ = 0 

af % w 

= 0 , 

+afEc(u,-u)2+ ig(e,-e) (10) ldZul Rv +af(u,,-u,)-i(1 -c#J)u, = - 1 
7 

EL --- 
at 

1 d2ur,, 
-2 +a(u,,Lu,)+iu,, = 0 
R, drl 

(11) 

Since the flow is induced by the pressure gradient ’ (15) 
of the form given in equation (7), the velocity and +2afEc(u,,-u,J(up, -u,)-i(1 -+)tI, = 0 

temperature of the fluid and that of the particle phase 
can be assumed as, $J(ep,-e,)+i~ep,+ g 

P 

u = u,(q) + cu ,(q) eir 

up = +7h) +&up1 61) 8 1 
(12) 

d*up, 
+upo- 
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+afEc(u,, -uJ2-2i(l -f$)e, = 0 
R-k,a: 

B, = 2 al-81 ’ 

, K= -k, -,/(k:-4k,) 
2 . 

+2iye,, = o J 
k,=;, k2 = RR,(l-4)--iRR,cr{f+(l-4)}, -I 

The corresponding boundary conditions are, 
k, = - RR,(a+i), 

ug = 0, uw = 0, 8, = 0 at q = 0, 
ug = 0, U@ = 0, e. = 1 at r7 = 1 (17) k, =a(R,-Rn+i{R,-R(l--c#I)}. 

Using u, in the first equation of (15) the expression 

u !,=o, up,=o, e,=o at q=O, for up, can be obtained as, 

11, =o, up, = 0, 8, = 0 at r] = 1 

e2 = 0 at q =O, 

(18) up,= [*+3!$qu,+& 

e2=o at q=l (19) e”,“+e”,“-v’ eP,s+es,(‘-‘!r) 

1 +e”l +B,B: 1 +eBa 1 . (24) 

From the first two equations of (14) eliminating up we 
get, 

Eliminating O,, from the last two equations of (14) 
and using the solutions of u0 and up0 in the resulting 

,+m++m,=o 
d4u0 differential equation of BO, the solution has been 

drl dt12 
(20) obtained on applying the boundary conditions for B,, 

from (19), 

where rni = R,a - Raf and rn , = RR,a. 
Our objective is to discuss that type of flow in which e. = A~~-B~v~+c~(~-v)+ 

the volume fraction 4 of the particle phase is small 
but not negligible and particles will diffuse through- 

+D 

out the carrier fluid. So we can assume that the vis- 
[ 

(2Rm;+ 1) cos (2m,9-m,) 

cosity of particle phase is very small compared to that 
of the carrier fluid (i.e. vp << v), so that R, > R and 
f < 1 which make rni always positive. 

Solving the equation (20) for u0 using boundary 
conditions from (17) we have, 

(1 -flh 
-COS (moti- $1 +Fz (25) 

+ 
w--m, where 

4 
coshorl-mo/a -, 

cos (mo/2) (21) 

l- 

using expression of u. in the first equation of (14), I+,,, 
can be written as, 

+I cos (mo9 - mob9 _ 1 
cos (m,/2) ’ B =REcPr 4af( 1 + R2m$ 

2 8mi 
m,m,2+ 

(22) 
4 

Similarly, eliminating up, from the first two equa- 
tions of (15) and solving the resulting differential 

+ 
2Raf 

rnz cos2 (m,/2) 1 
equation for u, with appropriate boundary conditions 
from (18) we get, c2 = 

24, =A, 
e”,“+e”,“-“’ 

1 +e”l +B e@‘s+e8’(‘-rl) 
EC Pr R 2af 

I 1+es1 
+k, (23) D2 = 

rni cos (m,/2) 
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FIG. 1. Distribution of uO and IQ,. 

E = EcPrRf 
2 R, cos (m,/2) (m hD2 

F, = D2 2Rmi+3ml- 
I- 2Rmi cos (m,,) 

8 cos (m,/2) 

From the last equation of (14) using expressions of 
u,, and up0 from (21) and (22) respectively, we get, 

2 sin (moqFm,/2) ’ 
+-q-2q+m, 

~0s h/2) 1 

+$I-,) 
cos bw-m0/2) _ 1 

cos bb/2) II- 
0.70 

,+=o.ob 

0.56 

2: 
- 3- 0.42 

z 
8 3 
= 
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FIG. 2. Distribution of the amplitude of u, and z+,,. FIG. 4. Distribution of amplitude of 0,. 
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FIG. 3. Distribution of phase lag of u, and up,. 

From the last two equations of (15), or,, has been 
eliminated and the resulting differential equation of 
8, has been solved using appropriate boundary con- 
ditions from (18). Using the expression for 8, in the 
last equation of (15), the expression for or, can be 
calculated. Applying the same procedure in the two 
equations of (16) and using boundary conditions from 
(19) the solution of e2 and BP1 can easily be obtained. 
To save space, the expressions for 0,, B,,,, B2 and Orz 
have been omitted. 

DISCUSSION 

In order to make a detailed discussion of results, 
numerical computations have been made on taking 
R = 5.0, R, = 20.0, u = 10, Pr = 0.72, EC = 0.02, 
y = 1.4, 4 = (0.01-0.1) and .f= (p,/p)r$, where we 
have assumed p,/p z 0( 10) and the results have been 
shown in Figs. l-7. 

Figure 1 shows that the distribution of the steady 
part of the velocity of fluid as well as that of the 

O.Ol! 
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FIG. 5. Steady part df+,/dq of heat transfer of fluid phase 
against4atq=Oandq= 1. 

particle phase for various values of volume fraction 
4. It reveals that for both phases the velocity 
increases with increase of q5 and it may be noted that 
unlike the profiles of the fluid velocity, the profiles of 
the particle phase velocity are flatter at the centre of 
the channel. 

In Fig. 2 the graphs of the amplitude of the unsteady 
part of the velocity of the fluid and that of the particle 
phase have been drawn against q for different values 
of 4. It can be observed that the amplitude increases 
with increase of q5 for both phases. The profiles of the 
particle phase show that the amplitude remains the 
same for some distance near the centre of the channel. 

Figure 3 shows the variation of phase lag of the 
unsteady part of the velocity of fluid as well as of 
particle phase against q for various values of q5. It 
shows that phase lag increases with increase of 4 and 
at the centre of the channel the phase lag is maximum 
for both phases. 
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FIG. 6. Amplitude of unsteady part dl?,/dq of heat transfer 
of fluid phase against 4 at 4 = 0 and ~7 = 1. 
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+- 

FIG. 7. Amplitude of unsteady part d0Jdq of heat transfer 
of fluid phase against 4 at t7 = 0 and q = 1. 

Figure 4 shows the variation of the amplitude of 
first unsteady part of the temperature of the fluid and 
that of the particle phase against q for various 4. It is 
observed that amplitude increases with increase of 4 
and reaches maximum near the colder wall. 

The graphs of the steady part of heat transfer dO,,/dq 
at q = 0 and q = I against C$ have been drawn in Fig. 
5. It shows that at the colder plate q = 0, dO,,/dq 
increases with increase of I$ and at the hotter plate 
q = I, dOO/dq decreases with increase of 4. Heat trans- 
fer rate at q = 1 is always less than that at q = 0. 

Figure 6 shows the graphs of amplitude of unsteady 
part of heat transfer, dO,/dq and dO,,/dq against C$ for 
‘1 = 0 and 9 = I. It reveals that the amplitude of 
dO,/dq increase with increase of q!~ and the values of 
amplitude of dO,/dq and dO,,/dq at q = 0 are greater 
than those at q = 1. 

Figure 7 shows the graphs of amplitude of unsteady 
part of heat transfer dtIs/dq and dO,,/dq against 4 
for q = 0 and 9 = 1. It reveals that for small 4, the 
amplitude of dO,/dq and dO,,/drl increase with increase 
of q5. 

CONCLUSION 

This study reveals that the unsteady pulsatile flow 
of a dusty fluid has a phase lag which increases with 
increase of particle loading. The amplitude of the 
unsteady part of the heat transfer increases with 
increase of particle loading. 
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